7 research outputs found

    Immune upregulation of novel antibacterial proteins from silkmoths (Lepidoptera) that resemble lysozymes but lack muramidase activity

    Get PDF
    Study on immune proteins in domesticated and wild silkmoths Bombyx mori and Antheraea mylitta, respectively, led to identification of a new class of antimicrobial proteins. We designated them as lysozyme-like proteins (LLPs) owing to their partial similarity with lysozymes. However, lack of characteristic catalytic amino acid residues essential for muramidase activity in LLPs puts them functionally apart from classical lysozymes. Two LLPs, one from B. mori (BLLP1) and the other from A. mylitta (ALLP1) expressed in a recombinant system, exhibited a broad-spectrum antibacterial action. Further investigation of the antibacterial mechanism revealed that BLLP1 is bacteriostatic rather than bactericidal against Escherichia coli and Micrococcus luteus. Substantial increase in hemolymph bacterial load was observed in B. mori upon RNA interference mediated in vivo knockdown of BLLP1. We demonstrate that the antibacterial mechanism of this protein depends on peptidoglycan binding unlike peptidoglycan hydrolysis or membrane permeabilization as observed with lysozymes and most other antimicrobial peptides. To our knowledge, this is the first report on functional analysis of novel, non-catalytic lysozyme-like family of antibacterial proteins that are quite apart functionally from classical lysozymes. The present analysis holds promise for functional annotation of similar proteins from other organisms

    Analysis of bacteria-challenged wild silkmoth, Antheraea mylitta (lepidoptera) transcriptome reveals potential immune genes

    Get PDF
    BACKGROUND: In the recent years a strong resemblance has been observed between the insect immune system and the mammalian innate immune mechanisms suggesting their common origin. Among the insects, only the dipterans (Drosophila and various mosquito species) have been widely investigated for their immune responses towards diverse pathogens. In the present study we constructed and analysed the immune transcriptome of the lepidopteran Antheraea mylitta, an economically important Indian tasar silkmoth with a view to unravel the potential immune-related genes and pathways. RESULTS: An expressed sequence tag (EST) library was constructed from mRNA obtained from fat bodies of A. mylitta larvae that had been challenged by infection with Escherichia coli cells. We identified 719 unique ESTs from a total of 1412 sequences so generated. A third of the transcriptome showed similarity with previously characterized immune-related genes that included both the known and putative immune genes. Of the four putative novel defence proteins (DFPs) annotated by PSI-BLAST three showed similarity to extracellular matrix proteins from vertebrates implicated in innate immunity, while the fourth was similar to, yet distinct from, the anti-microbial protein cecropin. Finally, we analysed the expression profiles of 15 potential immune-related genes, and the majority of them were induced more prominently with E. coli compared to Micrococcus luteus. We also identified several unknown proteins, some of which could have probable immune-related functions based on the results of the ProDom analysis. CONCLUSION: The present study has identified many potential immune-related genes in A. mylitta some of which are vertebrate homologues and others are hitherto unreported putative defence proteins. Several genes were present as members of gene families, as has also been observed in other insect species

    RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design

    Full text link

    Noduler, A novel immune up-regulated protein mediates nodulation response in insects

    No full text
    Insect immune system comprises of both humoral and cellular defenses. Nodulation is one of the major, yet very poorly understood cellular responses against microbial infections in insects. Through screening for novel immune genes from an Indian saturniid silkmoth Antheraea mylitta, we identified a protein up-regulated in hemolymph within minutes upon bacterial challenge. We have shown here, for first time, the involvement of this novel protein in mediating nodulation response against bacteria and hence designated it as Noduler. Noduler possessed a characteristic reeler domain found in several extracellular matrix vertebrate proteins. Noduler was shown in vitro to bind a wide range of bacteria, yeast, and also insect hemocytes. Furthermore, Noduler specifically bound LPS, lipotechoic acid, and β-1, 3 glucan components of microbial cell walls. RNA-interference mediated knock-down of the Noduler resulted in significant reduction in the number of nodules and consequent increase in bacterial load in larval hemolymph. The results suggest that the Noduler is widely conserved and is involved in very early clearance of bacteria by forming nodules of hemocytes and bacterial complexes in insects. The results would promote further studies for understanding of the crucial but hitherto overlooked nodulation mechanism in insects and also provide cues for the study of similar mammalian proteins whose function is not understood

    RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design

    No full text
    Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive experiments have not been collected in such a way that they are possible to analyze. In this review, we have collected detailed data from more than 150 experiments including all to date published and many unpublished experiments. Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involved in immunity. On the contrary, gene expression in epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding dsRNA requires high concentrations for success. Possible causes for the variability of success in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the innate immune response. Our general understanding of RNAi in Lepidoptera will be further aided in the future as our public database at http://insectacentral.org/RNAi will continue to gather information on RNAi experiments
    corecore